EXERCISES 401

11.

= X;

i:=1;

while (i !=y) do begin
P:=p*x
i=i4+1

end;

end;

Write formal specifications for a program to compute the product of two numbers. Then,
using the axiomatic method, prove that this program is correct.

Consider the following two algorithms for searching an element E in a sorted array A,
which contains n integers. The first procedure implements a simple linear search algo-
rithm. The second performs a binary search. Binary search is generally much more
efficient in terms of execution time compared to the linear search.

function lin_search (A, E): boolean

var
i: integer;
found: boolean;

begin
found := false;
i:=1;
while (not found) and (i < n) do begin
if (Afi] = E) then found := true;
i=i+1
end;
lin_search := found;

end;

function bin_search (A, E): boolean

var
low, high, mid, i, j : integer;
found : boolean;

begin
low := 1;
high := n;
found := false;

while (low < high) and (not found) do begin
mid := (low + high)/2;
if E < A[mid] then high := mid - 1
else if E > A[mid] then low := mid + 1

402

13.

14

15.

16.

17.

CHAPTER 9. CODING

else found := true;
end;
bin_search := found;
end;

Determine the cyclomatic complexity and live variable complexity for these two functions.
Is the ratio of the two complexity measures similar for the two functions?

2. What is Halstead's size measure for these two modules? Compare this size with the size

measured in LOC.

Consider the size measure as the number of bytes needed to store the object code of a
program. How useful is this size measure? Is it closer to LOC or Halstead’s metric?
Explain.

Not all control statements are equally complex. Assign complexity weights (0-10) to
different control statements in Java. and then determine a formula to calculate the com-
plexity of a program. How will vou determine if this measure is better or worse thaun other
comwplexity measures?

A combination of conditions in a decision makes a decision more complex. Such decisions
should be treated as a combination of different decisions. Compared to the simple measure
where each decision is treated as one, how much will the difference in the cyclomatic
complexity of a program with 20% of its conditional statements having two conditions
and 20% having three conditions be, when evaluated by this new approach?

Design an experiment to study the correlation between some of the complexity measures
and between some of the size measures.

Design an experiment to study if the “error-proneness” of a module is related to a com-
plexity measure for the module.

CASE STUDIES 403

Case Studies

Implementation of Structured Design of Case Study 1

The programs were written in C on a Sun workstation, as required. The first version
almost directly implemented the modules specified in the function-oriented design. The
total size of the program was about 1320 lines. We determined various code based
complexity and size metrics for this code using the tool complexity that we developed.
This is shown below.

MODULE SIZE CYCLOMATIC COMPLEXITY
validate_file2 111 18
validate_dept_courses 88 17
sched_ug_pref 104 16
validate_class_rooms 92 15
validate_lec_times 84 15
print_conflicts 50 11
print_TimeTable 42 10
chk_fmt_time_slot 36 10
sched_pg_pref 82 9
separate_courses 46 9
Total Size: 1322 Total Cyclomatic Complexity: 243
Avg. size: 33 Avg. Cyclomatic Complexity: 6

From these metrics, it was clear that some of the modules were too large and had a
high complexity value. Based on this information, we carefully reviewed some of these
modules to see if their size or complexity could be reduced. During the reviews we found
that in these modules some parts of the code were actually implementing some support
functions that can be separated by forming clean, functionally cohesive modules.

As a result of this, a few new modules were formed. The complexity of many of the
modules was reduced, and there was a general decline in the average complexity. It is
worth noting that the total size and complexity is reduced by this exercise, besides the
reduction in the complexity and size of the individual modules. That is, by this exercise
we did not just redistribute the complexity, we actually reduced the overall complexity.
The overall figures after the changes are:

404 CHAPTER 9. CODING

Total Size: 1264 Total Cyclomatic Complexity: 235
Avg. Size: 30 Avg. Cyclomatic Complexity: 5

0O Design Implementation of Case Study 1

The object-oriented design of the case study given earlier was implemented in C++. The
implementation did extend the design a little, as is to be expected, but the extension was
mostly in the addition of data members and some methods. No major design changes
were required due to implementation issues. The code could have been analyzed by
using some of the metrics and then modified, as was done in the code implementing
the structured design. However, this was not done for this implementation for three
reasons. First, we did not have tools to analyze the C++ programs. Secondly, some of
the tools that were available for use through other sources worked on a different version
of C++ (our implementation is in GNU C++). And finally, the OO metrics are still
relatively new, and not much data about their use is available.

The C++ code for the case study is also available from the home page of the book.

Implementation of Case Study 2

This case study was implemented in Java on a PC. Some unit testing was done on some
of the modules using Junit. The unit testing report is available from the Web site.
The entire code for this case study is also available from the Web site.

Chapter 10

Testing

In a software development project, errors can be introduced at any stage during devel-
opment. Though errors are detected after each phase by techniques like inspections,
some errors remain undetected. Ultimately, these remaining errors will be reflected in
the code. Hence, the final code is likely to have some requirements errors and design
errors, in addition to errors introduced during the coding activity. Testing is the activ-
ity where the errors remaining from all the previous phases must be detected. Hence,
testing performs a very critical role for ensuring quality. The focus of this chapter is
primarily on system testing in which the entire software system is tested, though test-
ing is also performed on individual programs written by programmers and the concepts
discussed are also applicable for individual program testing.

During testing, the software to be tested is executed with a set of test cases, and
the behavior of the system for the test cases is evaluated to determine if the system
is performing as expected. Clearly, the success of testing in revealing errors depends
critically on the test cases. Much of this chapter is devoted to test case selection, criteria
for selecting test cases, and their effect on testing.

We begin this chapter by discussing some definitions and concepts pertinent to
testing. Then we discuss the two basic approaches to testing—black box or functional
testing and white-box or structural testing. Aspects of testing process is discussed next,
followed by a discussion on how testing data can be used for defect prevention. Then we
discuss reliability estimation, as reliability is the main metric of interest during testing.
This chapter ends with case studies.

10.1 Testing Fundamentals

In this section we will first define some of the terms that are commonly used when
discussing testing. Then we will discuss some basic issues relating to how testing can
proceed, the need for oracles for testing, the importance of psychology of the tester, and

405

406 CHAPTER 10. TESTING

some desirable properties for the criteria used for testing. Once these are discussed, we
will proceed with the issue of selection of test cases.

10.1.1 Error. Fault. and Failure

So far, we have used the intuitive meaning of the term error to refer to problems in
requirements, design, or code. Sometimes error, fault, and failure are used interchange-
ably, and sometimes they refer to different concepts. Let us start by defining these
concepts clearly. We follow the IEEE definitions [91] for these terms.

The term error is used in two different ways. It refers to the discrepancy between a
computed, observed, or measured value and the true, specified, or theoretically correct
value. That is, error refers to the difference between the actual output of a software
and the correct output. In this interpretation, error is essentially a measure of the
difference between the actual and the ideal. Error is also used to refer to human action
that results in software containing a defect or fault. This definition is quite general and
encompasses all the phases.

Fault is a condition that causes a system to fail in performing its required function. A
fault is the basic reason for software malfunction and is synonymous with the commonly
used term bug. The term error is also often used to refer to defects (taking a variation
of the second definition of error). In this book we will continue to use the terms in the
manner commonly used, and no explicit distinction will be made between errors and
faults, unless necessary. It should be noted that the only faults that a software has are
“design faults”; there is no wear and tear in software.

Failure is the inability of a system or component to perform a required function
according to its specifications. A software failure occurs if the behavior of the software
is different from the specified behavior. Failures may be caused due to functional or
performance reasons. A failure is produced only when there is a fault in the system.
However, presence of a fault does not guarantee a failure. In other words, faults have
the potential to cause failures and their presence is a necessary but not a sufficient
condition for failure to occur. Note that the definition does not imply that a failure
must be observed. It is possible that a failure may occur but not be detected.

Note also that what is called a “failure” is dependent on the project, and its exact
definition is often left to the tester or project manager. For example, is a misplaced line
in the output a failure or not? Clearly, it depends on the project; some will consider it a
failure and others will not. Take another example. If the output is not produced within
a given time period, is it a failure or not? For a real-time system this may be viewed
as a failure, but for an operating system it may not be viewed as a failure. This means
that there can be no general definition of failure, and it is up to the project manager or
end user to decide what will be considered a failure for reliability purposes. Note that
in the example of a misplaced line, a defect might be recorded, and even corrected later,
but its occurrence might not be considered a failure.

10.1. TESTING FUNDAMENTALS 407

There are some implications of these definitions. Presence of an error (in the state)
implies that a failure must have occurred, and the observance of a failure implies that
a fault must be present in the system. However, the presence of a fault does not imply
that a failure must occur. The presence of a fault in a system only implies that the fault
has a potential to cause a failure to occur. Whether a fault actually manifests itself in
a certain time duration depends on many factors. This means that if we observe the
behavior of a system for some time duration and we do not observe any errors, we
cannot say anything about the presence or absence of faults in the system. If, on the
other hand, we observe some failure in this duration, we can say that there are some
faults in the system.

There are direct consequences of this on testing. In testing, system behavior is
observed, and by observing the behavior of a system or a component during testing, we
determine whether or not there is a failure. Because of this fundamental reliance on
behavior observation, testing can only reveal the presence of faults, not their absence.
By observing failures of the system we can deduce the presence of faults; but by not
observing a failure during our observation (or testing) interval we cannot claim that
there are no faults in the system. An immediate consequence of this is that it becomes
hard to decide for how long we should test a system without observing any failures
before deciding to stop testing. This makes “when to stop testing” one of the hard
issues in testing.

During the testing process, only failures are observed, by which the presence of faults
is deduced. That is, testing only reveals the presence of faults. The actual faults are
identified by separate activities, commonly referred to as “debugging.” In other words,
for identifying faults, after testing has revealed the presence of faults, the expensive task
of debugging has to be performed. This is one of the reasons why testing is an expensive
method for identification of faults, compared to methods that directly observe faults.

10.1.2 Test Oracles

To test any program, we need to have a description of its expected behavior and a
method of determining whether the observed behavior conforms to the expected behav-
ior. For this we need a test oracle.

A test oracle is a mechanism, different from the program itself, that can be used to
check the correctness of the output of the program for the test cases. Conceptually, we
can consider testing a process in which the test cases are given to the test oracle and
the program under testing. The output of the two is then compared to determine if the
program behaved correctly for the test cases, as shown in Figure 10.

Test oracles are necessary for testing. Ideally, we would like an automated oracle,
which always gives a correct answer. However, often the oracles are human beings, who
can make mistakes. As a result, when there is a discrepancy between the results of
the program and the oracle, we have to verify the result produced by the oracle, before
declaring that there is a fault in the program.

408 CHAPTER 10. TESTING

Software
Under [
Testing
Testcases Results of
Testing
Test -
Oracle

Figure 10.1: Testing and test oracles.

The human oracles generally use the specifications of the program to decide what the
“correct” behavior of the program should be. However, the specifications themselves
may contain errors, be imprecise, or contain ambiguities. Such shortcomings in the
specifications are the major cause of situations where one party claims that a particular
condition is not a failure while the other claims it is. There is no easy solution to this
problem, as testing does require some specifications against which the given system is
tested.

There are some systems where oracles are automatically generated from specifica-
tions of programs or modules. With such oracles, we are assured that the output of
the oracle is consistent with the specifications. These oracles also eliminate the effort
of determining the expected behavior for a test case. However, even this approach does
not solve all our problems, because of the possibility of errors in the specifications. Con-
sequently, an oracle generated from the specifications will only produce correct results
if the specifications are correct, and it will not be dependable in the case of specification
errors. Furthermore, such systems that generate oracles from specifications are likely to
require formal specifications, which are frequently not generated during design.

10.1.3 Test Cases and Test Criteria

Having test cases that are good at revealing the presence of faults is central to successful
testing. The reason for this is that if there is a fault in a program, the program can still
provide the expected behavior for many inputs. Only for the set of inputs that exercise
the fault in the program will the output of the program deviate from the expected
behavior. Hence, it is fair to say that testing is as good as its test cases.

Ideally, we would like to determine a set of test cases such that successful execution
of all of them implies that there are no errors in the program. This ideal goal cannot
usually be achieved due to practical and theoretical constraints. Each test case costs
money, as effort is needed to generate the test case, machine time is needed to execute the
program for that test case, and more effort is needed to evaluate the results. Therefore,

10.1. TESTING FUNDAMENTALS 409

we would also like to minimize the number of test cases needed to detect errors. These
are the two fundamental goals of a practical testing activity—maximize the number
of errors detected and minimize the number of test cases (i.e., minimize the cost). As
these two are frequently contradictory, the problem of selecting the set of test cases with
which a program should be tested becomes more complex.

While selecting test cases the primary objective is to ensure that if there is an error
or fault in the program, it is exercised by one of the test cases. An ideal test case set
is one that succeeds (meaning that its execution reveals no errors) only if there are
no errors in the program. One possible ideal set of test cases is one that includes all
the possible inputs to the program. This is often called ezhaustive testing. However,
exhaustive testing is impractical and infeasible, as even for small programs the number
of elements in the input domain can be extremely large.

So, how should we select our test cases? On what basis should we include some
element of the program domain in the set of test cases and not include others? For this
test selection criterion (or simply test criterion) can be used. For a given program P
and its specifications S, a test selection criterion specifies the conditions that must be
satisfied by a set of test cases T. The criterion becomes a basis for test case selection.
For example, if the criterion is that all statements in the program be executed at least
once during testing, then a set of test cases T satisfies this criterion for a program P if
the execution of P with T ensures that each statement in P is executed at least once.

There are two fundamental properties for a testing criterion: reliability and validity
[73]. A criterion is reliable if all the sets (of test cases) that satisfy the criterion detect
the same errors. That is, it is insignificant which of the sets satisfying the criterion is
chosen; every set will detect exactly the same errors. A criterion is valid if for any error
in the program there is some set satisfying the criterion that will reveal the error. A
fundamental theorem of testing is that if a testing criterion is valid and reliable, if a
set satisfying the criterion succeeds (revealing no faults), then the program contains no
errors [73]. However, it has been shown that no algorithm exists that will determine a
valid criterion for an arbitrary program.

Getting a criterion that is reliable and valid and that can be satisfied by a manageable
number of test cases is usually not possible. So, often criteria are chosen that are not
valid or reliable like “90% of the statements should be executed at least once.” Often
a criterion is not even clearly specified, as in “all special values in the domain must be
included” (what is a “special value”?).

Even when the criterion is specified, generating test cases to satisfy a criterion is not
simple. In general, generating test cases for most of the criteria cannot be automated.
For example, even for a simple criterion like “each statement of the program should
be executed,” it is extremely hard to construct a set of test cases that will satisfy this
criterion for a large program, even if we assume that all the statements can be executed
(i.e., there is no part that is not reachable).

410 CHAPTER 10. TESTING

A criterion C includes (or subsumes) the criterion Cj if for every program P and its
specification S, any set of test cases that satisfy C; also satisfy Cs {145, 67]. This relation
is represented as C; = Cy, and is a transitive relation. One may think that if C1 = C,
testing based on C; will always be better than testing based on Ca. Unfortunately, this
is not the case. The reason is that the fault-detection capability of a set of test cases
T that satisfy a criterion C depends on the actual test cases in T and not just C (i.e.,
the criterion is not valid). In other words, if 71 and T, both satisfy C for a program P,
it does not mean that 71 and T, will execute the same paths of P and detect the same
faults in P. Because the actual test cases also play a role in whether or not an error
in a program is detected, in general, it is possible to have a situation where C7 = Cy,
T, satisfies C;, T satisfies Ca, but Ty detects an error that T; does not. However, if
similar methods are used for test case generation then, generally speaking, C; will be
better for testing than Cy if C; = Cs.

The intent of the preceding discussion is to illustrate that no single criterion will
serve the purpose of detecting a reasonable number of errors in a program. Though
frequently the focus is on the criterion, to use a criterion for testing, the strategy for
generating test cases to satisfy a criterion is also important. As it is generally known
that all the faults in a program cannot be practically revealed by testing, and due to the
limitations of the test criterion, it is best that during testing more than one criterion
be used.

10.1.4 Psychology of Testing

As we have seen, devising a set of test cases that will guarantee that all errors will be
detected is not feasible. Moreover, there are no formal or precise methods for selecting
test cases. Even though there are a number of heuristics and rules of thumb for deciding
the test cases, selecting test cases is still a creative activity that relies on the ingenuity of
the tester. Because of this, the psychology of the person performing the testing becomes
important.

The basic purpose of testing is to detect the errors that may be present in the
program. Hence, one should not start testing with the intent of showing that a program
works; but the intent should be to show that a program does not work. With this in
mind we can define testing as the process of executing a program with the intent of
finding errors [121].

This emphasis on proper intent of testing is not a trivial matter because test cases
are designed by human beings, and human beings have a tendency to perform actions
to achieve the goal they have in mind. So, if the goal is to demonstrate that a program
works, we may consciously or subconsciously select test cases that will try to demon-
strate that goal and that will beat the basic purpose of testing. On the other hand, if
the intent is to show that the program does not work, we will challenge our intellect
to find test cases toward that end, and we are likely to detect more errors. Testing is
essentially a destructive process, where the tester has to treat the program as an adver-

10.2. BLACK-BOX TESTING 411

sary that must be beaten by the tester by showing the presence of errors. With this in
mind, a test case is “good” if it detects an as-yet-undetected error in the program, and
our goal during designing test cases should be to design such “good” test cases.

One of the reasons many organizations require a product to be tested by people
not involved with developing the program before finally delivering it to the customer
is this psychological factor. It is hard to be destructive to something we have created
ourselves, and we all like to believe that the program we have written “works.” So,
it is not easy for someone to test his own program with the proper frame of mind for
testing. Another reason for independent testing is that sometimes errors occur because
the programmer did not understand the specifications clearly. Testing of a program by
its programmer will not detect such errors, whereas independent testing may succeed
in finding them.

This approach towards testing is suitable for earlier stages of testing, where indeed
the objective is to reveal errors. However, often the last stages of testing are meant more
for evaluating the product. In these types of testing, test cases are selected primarily
to mimic the user behavior or user scenarios.

10.2 Black-Box Testing

There are two basic approaches to testing: black-box and white-box. In black-box
testing the structure of the program is not considered. Test cases are decided solely
on the basis of the requirements or specifications of the program or module, and the
internals of the module or the program are not considered for selection of test cases.
In this section, we will present some techniques for generating test cases for black-box
testing. White-box testing is discussed in the next section.

In black-box testing, the tester only knows the inputs that can be given to the system
and what output the system should give. In other words, the basis for deciding test
cases in functional testing is the requirements or specifications of the system or module.
This form of testing is also called functional or behavioral testing.

The most obvious functional testing procedure is exhaustive testing, which as we
have stated, is impractical. One criterion for generating test cases is to generate them
randomly. This strategy has little chance of resulting in a set of test cases that is close
to optimal (i.e., that detects the maximum errors with minimum test cases). Hence,
we need some other criterion or rule for selecting test cases. There are no formal rules
for designing test cases for functional testing. In fact, there are no precise criteria for
selecting test cases. However, there are a number of techniques or heuristics that can be
used to select test cases that have been found to be very successful in detecting errors.
Here we mention some of these techniques.

412 CHAPTER 10. TESTING

10.2.1 Equivalence Class Partitioning

Because we cannot do exhaustive testing, the next natural approach is to divide the
input domain into a set of equivalence classes, so that if the program works correctly for
a value then it will work correctly for all the other values in that class. If we can indeed
identify such classes, then testing the program with one value from each equivalence
class is equivalent to doing an exhaustive test of the program.

However, without looking at the internal structure of the program, it is impossible
to determine such ideal equivalence classes (even with the internal structure, it usually
cannot be done). The equivalence class partitioning method [121] tries to approximate
this ideal. An equivalence class is formed of the inputs for which the behavior of the
system is specified or expected to be similar. Each group of inputs for which the
behavior is expected to be different from others is considered a separate equivalence
class. The rationale of forming equivalence classes like this is the assumption that if
the specifications require the same behavior for each element in a class of values, then
the program is likely to be constructed so that it either succeeds or fails for each of
the values in that class. For example, the specifications of a module that determines
the absolute value for integers specify one behavior for positive integers and another for
negative integers. In this case, we will form two equivalence classes—one consisting of
positive integers and the other consisting of negative integers.

For robust software, we must also consider invalid inputs. That is, we should define
equivalence classes for invalid inputs also.

Equivalence classes are usually formed by considering each condition specified on an
input as specifying a valid equivalence class and one or more invalid equivalence classes.
For example, if an input condition specifies a range of values (say, 0 < count < Max),
then form a valid equivalence class with that range and two invalid equivalence classes,
one with values less than the lower bound of the range (i.e., count < 0) and the other
with values higher than the higher bound (count > Max). If the input specifies a set
of values and the requirements specify different behavior for different elements in the
set, then a valid equivalence class is formed for each of the elements in the set and an
invalid class for an entity not belonging to the set.

One common approach for determining equivalence classes is as follows. If there is
reason to believe that the entire range of an input will not be treated in the same manner,
then the range should be split into two or more equivalence classes, each consisting of
values for which the behavior is expected to be similar. For example, for a character
input, if we have reasons to believe that the program will perform different actions if
the character is an alphabet, a number, or a special character, then we should split the
input into three valid equivalence classes.

Another approach for forming equivalence classes is to consider any special value for
which the behavior could be different as an equivalence class. For example, the value 0
could be a special value for an integer input.

10.2. BLACK-BOX TESTING 413

Also, for each valid equivalence class, one or more invalid equivalence classes should
be identified.

It is often useful to consider equivalence classes in the output. For an output equiv-
alence class, the goal is to have inputs such that the output for that test case lies in
the output equivalence class. As an example consider a program for determining rate of
return for some investment. There are three clear output equivalence classes—positive
rates—positive rate of return, negative rate of return, and zero rate of return. During
testing, it is important to test for each of these, that is, give inputs such that each of
these three outputs are generated. Determining test cases for output classes may be
more difficult, but output classes have been found to reveal errors that are not revealed
by just considering the input classes.

Once equivalence classes are selected for each of the inputs, then the issue is to select
test cases suitably. There are different ways to select the test cases. One strategy is
to select each test case covering as many valid equivalence classes as it can, and one
separate test case for each invalid equivalence class. A somewhat better strategy which
requires more test cases is to have a test case cover at most one valid equivalence class
for each input, and have one separate test case for each invalid equivalence class. In the
latter case, the number of test cases for valid equivalence classes is equal to the largest
number of equivalence classes for any input, plus the total number of invalid equivalence
classes.

As an example consider a program that takes two inputs—a string s of length up to
N and an integer n. The program is to determine the top n highest occurring characters
in s. The tester believes that the programmer may deal with different types of characters
separately. One set of valid and invalid equivalence classes for this is shown in Table 10.

Input Valid Equivalence Classes Invalid Equivalence Classes

5 EQ1: Contains numbers TEQ1: non-ASCII characters
EQ2: Contains lower case letters | IEQ2: String length > N
EQ3: Contains upper case letters
EQ4: Contains special characters
EQ5: String length between 0-N

n EQ6: Integer in valid range IEQ3: Integer out of range

Table 10.1: Valid and invalid equivalence classes.

With these as the equivalence classes, we have to select the test cases. A test case
for this is a pair of values for s and n. With the first strategy for deciding test cases,
one test case could be: s as a string of length less than N containing lower case, upper
case, numbers, and special characters; and n as the number 5. This one test case covers

414 CHAPTER 10. TESTING

all the valid equivalence classes (EQ1 through EQ6). Then we will have one test case
each for covering IEQ1, IEQ2, and IEQ3. That is, a total of 4 test cases is needed.

With the second approach, in one test case we can cover one equivalence class for
one input only. So, one test case could be: a string of numbers, and 5. This covers EQ1
and EQ6. Then we will need test cases for EQ2 through EQ5, and separate test cases
for IEQ1 through IEQ3.

10.2.2 Boundary Value Analysis

It has been observed that programs that work correctly for a set of values in an equiv-
alence class fail on some special values. These values often lie on the boundary of the
equivalence class. Test cases that have values on the boundaries of equivalence classes
are therefore likely to be “high-yield” test cases, and selecting such test cases is the aim
of the boundary value analysis. In boundary value analysis [121], we choose an input
for a test case from an equivalence class, such that the input lies at the edge of the
equivalence classes. Boundary values for each equivalence class, including the equiva-
* lence classes of the output, should be covered. Boundary value test cases are also called
“extreme cases.” Hence, we can say that a boundary value test case is a set of input
data that lies on the edge or boundary of a class of input data or that generates output
that lies at the boundary of a class of output data.

In case of ranges, for boundary value analysis it is useful to select the boundary
elements of the range and an invalid value just beyond the two ends (for the two invalid
equivalence classes). So, if the range is 0.0 < x < 1.0, then the test cases are 0.0, 1.0
(valid inputs), and -0.1, and 1.1 (for invalid inputs). Similarly, if the input is a list,
attention should be focused on the first and last elements of the list.

We should also consider the outputs for boundary value analysis. If an equivalence
class can be identified in the output, we should try to generate test cases that will
produce the output that lies at the boundaries of the equivalence classes. Furthermore,
we should try to form test cases that will produce an output that does not lie in the
equivalence class. (If we can produce an input case that produces the output outside
the equivalence class, we have detected an error.)

Like in equivalence class partitioning, in boundary value analysis we first determine
values for each of the variables that should be exercised during testing. If there are
multiple inputs, then how should the set of test cases be formed covering the boundary
values? Suppose each input variable has a defined range. Then there are 6 boundary
values—the extreme ends of the range, just beyond the ends, and just before the ends.
If an integer range is min to mazx, then the six values are min — 1, min, min + 1, mazx —
1, maz, max + 1. Suppose there are n such input variables. There are two strategies for
combining the boundary values for the different variables in test cases.

In the first strategy, we select the different boundary values for one variable, and
keep the other variables at some nominal value. And we select one test case consisting

10.2. BLACK-BOX TESTING 415

of nominal values of all the variables. In this case, we will have 6n + 1 test cases. For
two variables X and Y, the 13 test cases will be as shown in Figure 10.

X
Y nax X
X
X X X X XX X
Y .
X
Yenin X
X
Xmin Xmax
X

Figure 10.2: Test cases for BVA.

A second strategy is to try all possible combinations for the values for-the different
variables. As there are 7 values for each variable (6 boundary values and one nominal
value), if there are n variables, there will be a total of 7" test cases.

10.2.3 Cause-Effect Graphing

One weakness with the equivalence class partitioning and boundary value methods is
that they consider each input separately. That is, both concentrate on the conditions
and classes of one input. They do not consider combinations of input circumstances that
may form interesting situations that should be tested. One way to exercise combinations
of different input conditions is to consider all valid combinations of the equivalence
classes of input conditions. This simple approach will result in an unusually large
number of test cases, many of which will not be useful for revealing any new errors.
For example, if there are n different input conditions, such that any combination of the
input conditions is valid, we will have 2™ test cases.

Cause-effect graphing [121] is a technique that aids in selecting combinations of
input conditions in a systematic way, such that the number of test cases does not
become unmanageably large. The technique starts with identifying causes and effects
of the system under testing. A cause is a distinct input condition, and an effect is
a distinct output condition. Each condition forms a node in the cause-effect graph.
The conditions should be stated such that they can be set to either true or false. For
example, an input condition can be “file is empty,” which can be set to true by having

416 CHAPTER 10. TESTING

an empty input file, and false by a nonempty file. After identifying the causes and
effects, for each effect we identify the causes that can produce that effect and how the
conditions have to be combined to make the effect true. Conditions are combined using
the Boolean operators “and,” “or,” and “not,” which are represented in the graph by
&, |, and ~. Then for each effect, all combinations of the causes that the effect depends
on which will make the effect true are generated (the causes that the effect does not
depend on are essentially “don’t care”). By doing this, we identify the combinations
of conditions that make different effects true. A test case is then generated for each
combination of conditions, which make some effect true.
Let us illustrate this technique with a small example. ~ Suppose that for a bank

database there are two commands allowed:

credit acct_number transaction_amount

debit acct_number transaction_amount

The requirements are that if the command is credit and the acct_number is valid, then
the account is credited. If the command is debit, the acct_number is valid, and the
transaction_amount is valid (less than the balance), then the account is debited. If the
command is not valid, the account number is not valid, or the debit amount is not valid,
a suitable message is generated. We can identify the following causes and effects from
these requirements: .

Causes:
cl. Command is credit
¢2. Command is debit
¢3. Account number is valid
c4. Transaction_amt is valid

Effects:
el. Print “invalid command”
e2. Print “invalid account_number”
e3. Print “Debit amount not valid”
e4. Debit account
e5. Credit account

The cause-effect of this is shown in Figure 10. In the graph, the cause-effect rela-
tionship of this example is captured. For all effects, one can easily determine the causes
each effect depends on and the exact nature of the dependency. For example, according
to this graph the effect €5 depends on the causes c2, c3, and ¢4 in a manner such that
the effect 5 is enabled when all ¢2, ¢3, and c4 are true. Similarly, the effect e2 is enabled
if ¢3 is false.

10.2. BLACK-BOX TESTING 417

From this graph, a list of test cases can be generated. The basic strategy is to set an
effect to 1 and then set the causes that enable this condition. The condition of causes
forms the test case. A cause may be set to false, true, or don’t care (in the case when the
effect does not depend at all on the cause). To do this for all the effects, it is convenient
to use a decision table. The decision table for this example is shown in Figure 10.

Figure 10.3: The causc-effect graph.

This table lists the combinations of conditions to set different effects. Each combi-
nation of conditions in the table for an effect is a test case. Together, these condition
combinations check for various effects the software should display. For example, to test
for the effect €3, both ¢2 and c4 have to be set. That is, to test the effect “Print debit
amount not valid,” the test case should be: Command is debit (setting c2 to True), the
account number is valid (setting c3 to False), and the transaction money is not proper
(setting c4 to False).

Cause-effect graphing, beyond generating high-yield test cases, also aids the under-
standing of the functionality of the system, because the tester must identify the distinct
causes and effects. There are methods of reducing the number of test cases generated
by proper traversing of the graph. Once the causes and effects are listed and their
dependencies specified, much of the remaining work can also be automated.

418 CHAPTER 10. TESTING

SNo.
cl
C2
c3
cd
el
e2 1
e3 1
ed 1
eb 1

MO M =N
S R = KW
e L RN
— = M=o

=i K O O

Figure 10.4: Decision table for the canse-etfect graph.

10.2.4 Pair-wise Testing

There are generally many parameters that determine the behavior of a software system.
These parameters could be direct input to the software or implicit settings like those for
devices. These parameters can take different values, and for some of them the software
may not work correctly. Many of the defects in software generally involve one condition,
that is, some special value of one of the parameters. Such a defect is called single-mode
fault [125]. Simple examples of single mode fault are a software not able to print for
a particular type of printer, a software that cannot compute fare properly when the
traveller is a minor, a telephone billing software that does not compute the bill properly
for a particular country.

Single-mode faults can be detected by testing for different values of different pa-
rameters. So, if there are n parameters for a system, and each one of them can take
m different values (or m different classes of values, each class being considered as same
for purposes of testing as in equivalence class partitioning), then with each test case we
can test one different value of each parameter. In other words, we can test for all the
different values in m test cases.

However, all faults are not single-mode and there are combinations of inputs that
reveal the presence of faults. For example, a telephone billing software that does not
compute correctly for night time calling (one parameter) to a particular country (an-
other parameter). Or an airline ticketing system that has incorrect behavior when a
minor (one parameter) is travelling business class (another parameter) and not staying
over the weekend (third parameter). These multi-mode faults can be revealed during

10.2. BLACK-BOX TESTING 419

testing by trying different combinations of the parameter values—an approach called
combinatorial testing.

Unfortunately, full combinatorial testing is often not feasible. For a system with n
parameters, each having m values, the number of different combinations is n™. For a
simple system with 5 parameters, each having 5 different values the total number of
combinations is 3,125. And if testing each combination takes 5 minutes, it will take
over one month to test all combinations. Clearly, for complex systems that have many
parameters and each parameter may have many values, a full combinatorial testing is
not feasible and practical techniques are needed to reduce the number of tests.

Some research has suggested that most software faults are revealed on some special
single values or by an interaction of pair of values [40]. That it, most faults tend to
be either single-mode or double-mode. For testing for double-mode faults, we need not
test the system with all the combinations of parameter values, but need to test such
that all combinations of values for each pair of parameters is exercised. This is called
pair-wise testing.

In pair-wise testing, all pairs of values have to be exercised during testing. If there
are n parameters, each with m values, then between each two parameter we have m *m
pairs. The first parameter will have these many pairs with each of the remaining n — 1
parameters, the second one will have new pairs with n — 2 parameters (as its pairs with
the first are already included in the first parameter pairs), the third will have pairs with
n — 3 parameters and so on. That is, the total number of pairs are m*m*n* (n—1)/2.

The objective of pair-wise testing is to have a set of test cases that cover all the pairs.
As there are n parameters, a test case is a combination of values of these parameters
and will cover (n — 1) 4+ (n — 2) + ... = n(n — 1)/2 pairs. In the best case when each
pair is covered exactly once by one test case, m? different test cases will be needed to
cover all the pairs.

As an example consider a software product being developed for multiple platforms
that uses the browser as its interface. Suppose the software is being designed to work
for three different operating systems and three different browsers. In addition, as the
product is memory intensive there is a desire to test its performance under different levels
of memory. So, we have the following three parameters with their different values:

Operating System: Windows, Solaris, Linux
Memory Size: 128M, 256M, 512M
Browser: IE, Netscape, Mozilla

For discussion, we can say that the system has three parameters: A (operating
system), B (memory size), and C (browser). Each of them can have three values which
we will refer to as ai,as,as, by,bs, b3, and c1,c2,c3. The total number of pair-wise
combinations is 9*3 = 27. The number of test cases, however, to cover all the pairs
is much less. A test case consisting of values of the three parameters covers three
combinations (of A-B, B-C, and A-C). Hence, in the best case, we can cover all 27

420 CHAPTER 10. TESTING

combinations by 27/3=9 test cases. These test cases are shown in Table 10, along with
the pairs they cover.

A | B | C | Pairs

al [bl [el | (al,bl) (al,cl) (bl,cl)
al | b2 [¢2 | (al,b2) (al,c2) (b2,c2)
al | b3 |3 | (al,b3) (al,c3) (b3,c3)
2 | b1 2 | (a2,bl) (a2,c2) (bl,c2)
a2 | h2 |3 | (a2,b2) (a2,e3) (b2,c3)
a2 | b3 |l (a2,b3) (a2,c1) (b3, cl)
a3 [b1 |3 | (a3,bl) (a3,c3) (b1,c3)
a3 [h2 |l | (a3,b2) (a3,cl) (b2,cl)
a3 | b3 |2 | (a3,b3) (a3,c2) (b3,c2)

Table 10.2: Test cases for pair-wise testing,

As should be clear, generating test cases to cover all the pairs is not a simple task.
The minimum set of test cases are those in which each pair is covered by exactly one
test case. Often, it will not be possible to generate the minimum set of test cases,
particularly when the number of values for different parameters is different. Various
algorithms have been proposed, and some programs are available online to generate the
test cases to cover all the pairs.

For many situations where manual generation is feasible, the following approach
can be followed. Start with one combination of parameter values. Keep adding new
combinations, choosing values such that no two values exist together in any earlier
test case, until all pairs are covered. When selecting such values is not possible, select
the values that has the fewest values that have existed together in an earlier test case.
Essentially we are generating a test case that can cover as many as new pairs as possible.
By avoiding covering pairs multiple times, we can produce a small set of test cases that
cover all pairs. Efficient algorithms of generating the smallest number of test cases for
pair-wise testing exist. In [40] an example is given in which for 13 parameters, each
having three distinct values, all pairs are covered in merely 15 test cases, while the total
number of combinations is over 1 million!

Pair-wise testing is a practical way of testing large software systems that have many
different parameters with distinct functioning expected for different values. An example
would be a billing system (for telephone, hotel, airline, etc.) which has different rates
for different parameter values. It is also a practical approach for testing general purpose
software products that are expected to run on different platforms and configurations,
or a system that is expected to work with different types of systems.

10.2. BLACK-BOX TESTING 421

10.2.5 Special Cases

It has been seen that programs often produce incorrect behavior when inputs form some
special cases. The reason is that in programs, some combinations of inputs need special
treatment, and providing proper handling for these special cases is easily overlooked.
For example, in an arithmetic routine, if there is a division and the divisor is zero, some
special action has to be taken, which could easily be forgotten by the programmer.
These special cases form particularly good test cases, which can reveal errors that will
usually not be detected by other test cases.

Special cases will often depend on the data structures and the function of the module.
There are no rules to determine special cases, and the tester has to use his intuition and
experience to identify such test cases. Consequently, determining special cases is also
called error guessing.

The psychology is particularly important for error guessing. The tester should play
the “devil’s advocate” and try to guess the incorrect assumptions the programmer could
have made and the situations the programmer could have overlooked or handled incor-
rectly. Essentially, the tester is trying to identify error prone situations. Then test cases
are written for these situations. For example, in the problem of finding the number of
different words in a file (discussed in earlier chapters) some of the special cases can be:
file is empty, only one word in the file, only one word in a line, some empty lines in the
input file, presence of more than one blank between words, all words are the same, the
words are already sorted, and blanks at the start and end of the file.

Incorrect assumptions are usually made because the specifications are not complete
or the writer of specifications may not have stated some properties, assuming them
to be obvious. Whenever there is reliance on tacit understanding rather than explicit
statement of specifications, there is scope for making wrong assumptions. Frequently,
wrong assumptions are made about the environments. However, it should be pointed
out that special cases depend heavily on the problem, and the tester should really try
to “get into the shoes” of the designer and coder to determine these cases.

10.2.6 State-Based Testing

There are some systems that are essentially state-less in that for the same inputs they
always give the same outputs or exhibit the same behavior. Many batch processing
systems, computational systems, and servers fall in this category. In hardware, combi-
natorial circuits fall in this category. At a smaller level, most functions are supposed to
behave in this manner. There are, however, many systems whose behavior is state-based
in that for identical inputs they behave differently at different times and may produce
different outputs. The reason for different behavior is the state of the system, that is,
the behavior and outputs of the system depend not only on the inputs provided, but
also on the state of the system. The state of the system depends on the past inputs
the system has received. In other words, the state represents the cumulative impact

422 CHAPTER 10. TESTING

of all the past inputs on the system. In hardware the sequential systems fall in this
category. In software, many large systems fall in this category as past state is captured
in databases or files and used to control the behavior of the system. For such systems,
another approach for selecting test cases is the state-based testing approach (34].

Theoretically, any software that saves state can be modeled as a state machine.
However, the state space of any reasonable program is almost infinite, as it is a cross
product of the domains of all the variables that form the state. For many systems the
state space can be partitioned into a few states, each representing a logical combination
of values of different state variables which share some property of interest [16]. If the
set of states of a system is manageable, a state model of the system can be built. A
state model for a system has four components:

o States. Represent the impact of the past inputs 1o the systenn.

o Transitions. Represent how the state of the svatem changes from one state 1o

another in response to some events.
o Loents. Inputs to the svsten.

o lotions. The ontputs for the events.

The state model shows what state transitions occur and what actions are performed
in a system in response to events. When a state model is built from the requirements
of a system, we can only include the states, transitions, and actions that are stated in
the requirements or can be inferred from them. If more information is available from
the design specifications, then a richer state model can be built.

For example, consider the student survey example discussed in Chapter 4. Ac-
cording to the requirements, a system is to be created for taking a student survey. The
student takes a survey and is returned the current result of the survey. The survey
result can be up to five surveys old. We consider the last architecture given in Figure
4.11, which had a cache between the server and the database, and in which the survey
and results are cached and updated only after 5 surveys, on arrival of a request. The
proposed architecture has a database at the back, which may go down.

To create a state machine model of this system, we notice that of a series of six
requests, the first 5 may be treated differently. Hence, we divide into two states: one
representing the the receiving of 1-4 requests (state 1), and the other representing the
receiving of request 5 (state 2). Next we see that the database can be up or down, and
it can go down in any of these two states. However, the behavior of requests, if the
database is down may be different. Hence, we create another pair of states (states 3
and 4). Once the database has failed, then the first 5 requests are serviced using old
data. When a request is received after receiving 5 requests, the system enters a failed
state (state 5), in which it does not give any response. When the system recovers from
the failed state, it must update its cache immediately, hence is goes to state 2. The

10.2. BLACK-BOX TESTING 423

state model for this system is shown in Figure 10 (i represents an input from the user
for taking the survey).

i/old data

6 old data Q

i/new data

Q i/no response

i/oid data

i/old data

Figure 10.5: State model for the student survey system.

Note that we are assuming that the state model of the system can be created from
its specifications or design. This is how most state modeling is done, and that is how the
model was built in the example. Once the state model is built, we can use it to select
test cases. When the design is implemented, these test cases can be used for testing the
code. It is because of this we treat state-based testing as a black box testing strategy.

However, the state model often requires information about the design of the system.
In the example above, some knowledge of the architecture is utilized. Sometimes making
the state model may require detailed information about the design of the system. For
example, for a class, we have seen that the state modeling is done during design, and
when a lot is already known about the class, its attributes, and its methods. Due to
this, the state-based testing may be considered as somewhat between black-box and
white-box testing. Such strategies are sometimes called gray boz testing.

Given a state model of a system how should test cases be generated? Many coverage
criteria have been proposed [123]. We discuss only a few here. Suppose the set of test
cases is T. Some of the criteria are:

e All transition coverage (AT). T must cusure that every transition i the state

oraph is exercised.

e All transitions pair coverage (ATP). T nmst execute all pairs of adjacent
transitions. { An adjacont transition pair cotprises of fwo transitions: an inconmsg

transition to a state and an ontenine transition from that state.)

424 CHAPTER 10. TESTING

e Transition tree coverage (TT). [wust cxecute all simiple paths. where a sim-
ple path is one which starts from the start state and reaches a state that it has
already visited in this path or a tinal state.

The first criterion states that during testing all transitions get fired. This will also
ensure that all states are visited. The transition pair coverage is a stronger criterion
requiring that all combinations of incoming and outgoing transitions for each state must
be exercised by T. If a state has two incoming transitions t1 and t2, and two outgoing
transitions t3 and t4, then a set of test cases T that executes t1;t3 and t2;t4 will satisfy
AT. However, to satisfy ATP, T must also ensure execution of t1;t4 and t2;t3. The
transition tree coverage is named in this manner as a transition tree can be constructed
from the graph and then used to identify the paths. In ATP, we are going beyond
transitions, and stating that different paths in the state diagram should be exercised
during testing. ATP will generally include AT.

For the example above, the set of test cases for AT are given below in Table 10.
Here req() means that a request for taking the survey should be given, fail() means that
the database should be failed, and recover() means that the failed database should be
recovered.

S.No. | Transition | Test case

1 1-2 req()

2 1-2 req();req();req();req();req();req()

3 2-1 seq for 2; req()

i 1-3 req();fail()

5 3—-3 req();fail();req()

6 3—4 req();fail();req();req();req();req();req()
7 4—5 seq for 6; req()

8 5—2 seq for 6; req();recover()

Table 10.3: Test cases for a state hased resting criteria.

As we can see, state-based testing draws attention to the states and transitions. Even
in the above simple case, we can see different scenarios get tested (e.g., system behavior
when the database fails, and system behavior when it fails and recovers thereafter).
Many of these scenarios are easy to overlook if test cases are designed only by looking
at the input domains. The set of test cases is richer if the other criteria are used. For
this example, we leave it as an exercise to determine the test cases for other criteria.

10.3 White-Box Testing

In the previous section we discussed black-box testing, which is concerned with the
function that the tested program is supposed to perform and does not deal with the

10.3. WHITE-BOX TESTING 425

internal structure of the program responsible for actually implementing that function.
Thus black-box testing is concerned with functionality rather than implementation of
the program. White-box testing, on the other hand is concerned with testing the imple-
mentation of the program. The intent of this testing is not to exercise all the different
input or output conditions (although that may be a by-product) but to exercise the
different programming structures and data structures used in the program. White-box
testing is also called structural testing, and we will use the two terms interchangeably.

To test the structure of a program, structural testing aims to achieve test cases
that will force the desired coverage of different structures. Various criteria have been
proposed for this. Unlike the criteria for functional testing, which are frequently impre-
cise, the criteria for structural testing are generally quite precise as they are based on
program structures, which are formal and precise. Here we will discuss three different
approaches to structural testing: control flow-based testing, data flow-based testing,
and mutation testing.

10.3.1 Control Flow-Based Criteria

Most common structure-based criteria are based on the control flow of the program. In
these criteria, the control flow graph of a program is considered and coverage of various
aspects of the graph are specified as criteria. Hence, before we consider the criteria, let
us precisely define a control flow graph for a program.

Let the control flow graph (or simply flow graph) of a program P be G. A node in this
graph represents a block of statements that is always executed together, i.e., whenever
the first statement is executed, all other statements are also executed. An edge (i, j)
(from node 7 to node j) represents a possible transfer of control after executing the
last statement of the block represented by node i to the first statement of the block
represented by node j. A node corresponding to a block whose first statement is the
start statement of P is called the start node of G, and a node corresponding to a block
whose last statement is an exit statement is called an exit node [129]. A path is a finite
sequence of nodes (n1,ng,...,nk),k > 1, such that there is an edge (ns,nit1) for all
nodes n; in the sequence (except the last node ny). A complete path is a path whose
first node is the start node and the last node is an exit node.

Now let us consider control flow-based criteria. Perhaps the simplest coverage crite-
ria is statement coverage, which requires that each statement of the program be executed
at least once during testing. In other words, it requires that the paths executed during
testing include all the nodes in the graph. This is also called the all-nodes criterion
[129)].

This coverage criterion is not very strong, and can leave errors undetected. For
example, if there is an if statement in the program without having an else clause,
the statement coverage criterion for this statement will be satisfied by a test case that
evaluates the condition to true. No test case is needed that ensures that the condition in
the if statement evaluates to false. This is a serious shortcoming because decisions in

426 CHAPTER 10. TESTING

programs are potential sources of errors. As an example, consider the following function
to compute the absolute value of a number:

int abs (x)

int x;

{
if (x>=0) x=0 - x;
return (x)

}

This program is clearly wrong. Suppose we execute the function with the set of test
cases { x=0 } (i.e., the set has only one test case). The statement coverage criterion
will be satisfied by testing with this set, but the error will not be revealed.

A little more general coverage criterion is branch coverage, which requires that each
edge in the control flow graph be traversed at least once during testing. In other words,
branch coverage requires that each decision in the program be evaluated to true and
false values at least once during testing. Testing based on branch coverage is often
called branch testing. The 100% branch coverage criterion is also called the all-edges
criterion [129]. Branch coverage implies statement coverage, as each statement is a part
of some branch. In other words, Chranch = Cstmt. In the preceding example, a set of
test cases satisfying this criterion will detect the error.

The trouble with branch coverage comes if a decision has many conditions in it (con-
sisting of a Boolean expression with Boolean operators and and or). In such situations,
a decision can evaluate to true and false without actually exercising all the conditions.
For example, consider the following function that checks the validity of a data item.
The data item is valid if it lies between 0 and 100.

int check(x)
int x;
{
if ((x >=) && (x <= 200))
check = True;
else check = False;

The module is incorrect, as it is checking for x < 200 instead of 100 (perhaps a typing
error made by the programmer). Suppose the module is tested with the following set
of test cases: { x = 5, x = -5 }. The branch coverage criterion will be satisfied for
this module by this set. However, the error will not be revealed, and the behavior of
the module is consistent with its specifications for all test cases in this set. Thus, the

10.3. WHITE-BOX TESTING 427

coverage criterion is satisfied, but the error is not detected. This occurs because the
decision is evaluating to true and false because of the condition (x > 0). The condition
(x < 200) never evaluates to false during this test, hence the error in this condition is
not revealed.

This problem can be resolved by requiring that all conditions evaluate to true and
false. However, situations can occur where a decision may not get both true and false
values even if each individual condition evaluates to true and false. An obvious solution
to this problem is to require decision/condition coverage, where all the decisions and
all the conditions in the decisions take both true and false values during the course of
testing.

Studies have indicated that there are many errors whose presence is not detected
by branch testing because some errors are related to some combinations of branches
and their presence is revealed by an execution that follows the path that includes those
branches. Hence a more general coverage criterion is one that requires all possible paths
in the control flow graph be executed during testing. This is called the path coverage
criterion or the all-paths criterion, and the testing based on this criterion is often called
path testing. The difficulty with this criterion is that programs that contain loops can
have an infinite number of possible paths. Furthermore, not all paths in a graph may
be “feasible” in the sense that there may not be any inputs for which the path can be
executed. It should be clear that Cpath = Chranch.

As the path coverage criterion leads to a potentially infinite number of paths, some
efforts have been made to suggest criteria between the branch coverage and path cov-
erage. The basic aim of these approaches is to select a set of paths that ensure branch
coverage criterion and try some other paths that may help reveal errors. One method
to limit the number of paths is to consider two paths the same if they differ only in
their subpaths that are caused due to the loops. Even with this restriction, the number
of paths can be extremely large.

Another such approach based on the cyclomatic complexity has been proposed in
[116]. The test criterion is that if the cyclomatic complexity of a module is V, then at
least V distinct paths must be executed during testing. We have seen that cyclomatic
complexity V of a module is the number of independent paths in the flow graph of
a module. As these are independent paths, all other paths can be represented as a
combination of these basic paths. These basic paths are finite, whereas the total number
of paths in a module having loops may be infinite.

It should be pointed out that none of these criteria is sufficient to detect all kind of
errors in programs. For example, if a program is missing some control flow paths that
are needed to check for a special value (like pointer equals nil and divisor equals zero),
then even executing all the paths will not necessarily detect the error. Similarly, if the
set of paths is such that they satisfy the all-path criterion but exercise only one part of
a compound condition, then the set will not reveal any error in the part of the condition
that is not exercised. Hence, even the path coverage criterion, which is the strongest

428 CHAPTER 10. TESTING

of the criteria we have discussed, is not strong enough to guarantee detection of all the
€errors.

10.3.2 Data Flow-Based Testing

Now we discuss some criteria that select the paths to be executed during testing based
on data flow analysis, rather than control flow analysis. In the previous chapter, we
discussed use of data flow analysis for static testing of programs. In the data flow-based
testing approaches, besides the control flow, information about where the variables are
defined and where the definitions are used is also used to specify the test cases. The basic
idea behind data flow-based testing is to make sure that during testing, the definitions
of variables and their subsequent use is tested. Just like the all-nodes and all-edges
criteria try to generate confidence in testing by making sure that at least all statements
and all branches have been tested, the data flow testing tries to ensure some coverage
of the definitions and uses of variables. Approaches for use of data flow information
have been proposed in [109, 129]. Our discussion here is based on the family of data
flow-based testing criteria that were proposed in [129]. We discuss some of these criteria
here.

For data flow-based criteria, a definition-use graph (def/use graph, for short) for the
program is first constructed from the control flow graph of the program. A statement
in a node in the flow graph representing a block of code has variable occurrences in it.
A variable occurrence can be one of the following three types [129]:

o dcjtepresciits the debinttion of o variabic. The vartable vu He jelt-hand side ol «il

asslgnnienl statenient Is the one getting defined.

o e veproesents conppritational ase ol vniahics Ay statement fe., resds vt
a1 assientnent) that nses the valne of virabdes o comptitational purposes is said
to he making cose of the viriables, Tian assignent statement At varinbles on
fhe rioht-Tand <tde have ooense ocenrrenses T s e owrite stitenent . all

vartnble ocenrrenices are of this tvpe

e pouse repro-enis prodicate e These are all the ocorences of the variables m
a predicate (o variables whose values are s d for comupnting the valie of the
procicate s which is n=edl o pranster of control,
Based on this classification, the following can be defined [129]. Note that c-use variables
may also affect the flow of control, though they do it indirectly by affecting the value
of the p-use variables. Because we are interested in the flow of data between nodes, a
c-use of a variable z is considered global c-use if there is no def of z within the block
preceding the c-use. With each node i, we associate all the global c-use variables in that
node. The p-use is associated with edges. If z1,Z2,...,Zn had p-use occurrences in the

10.3. WHITE-BOX TESTING 429

statement of a block from where two edges go to two different blocks 7 and & (e.g., with
an if then else), then z1,...,z, are associated with the two edges (3, j) and (i, k).

A path from node i to node j is called a def-clear path with respect to (w.r.t.) a
variable z if there is no def of z in the nodes in the path from 7 to j (nodes 7 and j may
have a def). Similarly, a def-clear path w.r.t. z from a node ¢ to an edge (j, k) is one in
which no node on the path contains a definition of x. A def of a variable x in a node
1 is a global def, if it is the last def of z in the block being represented by i, and there
is a def-clear path from i to some node with a global c-use of z. Essentially, a def is a
global def if it can be used outside the block in which it is defined.

The def/use graph for a program P is constructed by associating sets of variables
with edges and nodes in the flow graph. For a node i, the set def(i) is the set of variables
for which there is a global def in the node ¢, and the set c-use(i) is the set of variables
for which there is a global c-use in the node i. For an edge (7,), the set p-use(i, j) is
the set of variables for which there is a p-use for the edge (3, j).

Suppose a variable z is in def(i) of a node ¢. Then, dcu(z,1) is the set of nodes,
such that each node has z in its c-use, z € def (i), and there is a def-clear path from i to
j. That is, dcu(x, i) represents all those nodes in which the (global) c-use of x uses the
value assigned by the def of z in ¢. Similarly, dpu(z,) is the set of edges, such that each
edge has z in its p-use, z € def(i), and there is a def-clear path from i to (3, k). That
is, dpu(x, i) represents all those edges in which the p-use of = uses the value assigned
by the def of x in 1.

Based on these definitions proposed in [129], a family of test case selection criteria
was proposed in [129], a few of which we discuss here. Let G be the def/use graph for a
program, and let P be a set of complete paths of G (i.e., path representing a complete
execution of the program). A test case selection criterion defines the contents of P.

P satisfies the all-defs criterion if for every node ¢ in G and every z in def(i), P
includes a def-clear path w.r.t. z to some member of dcu(z,i) or some member of
dpu(z,i). This criterion says that for the def of every variable, one of its uses (either
p-use or c-use) must be included in a path. That is, we want to make sure that during
testing the use of the definitions of all variables is tested.

The all-p-uses criterion requires that for every x € def(i), P include a def-clear path
w.r.t. z from % to some member of dpu(z,i). That is, according to this criterion all
the p-uses of all the definitions should be tested. However, by this criterion a c-use
of a variable may not be tested. The all-p-uses, some-c-uses criterion requires that
all p-uses of a variable definition must be exercised, and some c-uses must also be
exercised. Similarly, the all-c-uses, some-p-uses criterion requires that all c-uses of a
variable definition be exercised, and some p-uses must also be exercised.

The all-uses criterion requires that all p-uses and all c-uses of a definition must be
exercised. That is, the set P must include, for every node ¢ and every = € def(i), a
def-clear path w.r.t. = from i to all elements of dcu(z,7) and to all elements of dpu(z, 7).
A few other criteria have been proposed in [129].

430 CHAPTER 10. TESTING

In terms of the number of test cases that might be needed to satisfy the data flow-
based criteria, it has been shown that though the theoretical limit on the size of the test
case set is up to quadratic in the number of two-way decision statements in the program,
the actual number of test cases that satisfy a criterion is quite small in practice [146].
Empirical observation in [146] seems to suggest that in most cases the number of test
cases grows linearly with the number of two-way decisions in the program.

As mentioned earlier, a criterion C; includes another criterion Cy (represented by
C; = () if any set of test cases that satisfy criterion C; also satisfy the criterion Cs.
The inclusion relationship between the various data flow criteria and the control flow
criteria is given in Figure 10 [129].

all-paths (path cverage)

'

all-uses

'

all-c-uses/c all-p-uses/c
scme-p-uses some-c-uses

e

all-defs all-p-uses

'

all-edges (branch coveragej

'

ali-nodes (statement coverage)

Fieure 10.6: Relationship hetween diffevent eritorin,

It should be quite clear that all-paths will include all-uses and all other structure-
based criteria. All-uses, in turn, includes all-p-uses, all-defs, and all-edges. However,
all-defs does not include all-edges (and the reverse is not true). The reason is that all-
defs is focusing on all definitions getting used, while all-edges is focusing on all decisions
evaluating to both true and false. For example, a decision may evaluate to true and false
in two different test cases, but the use of a definition of a variable £ may not have been
exercised. Hence, the all-defs and all-edges criteria are, in some sense, incomparable.

As mentioned earlier, inclusion does not imply that one criterion is always better
than another. At best, it means that if the test case generation strategy for two criteria
C1 and C; is similar, and if C; = Cs, then statistically speaking, the set of test cases
satisfying C; will be better than a set of test cases satisfying C;. The experiments

10.3. WHITE-BOX TESTING 431

reported in [67] show that no one criterion (out of a set of control flow-based and data
flow-based criteria) does significantly better than another consistently. However, it does
show that testing done by using all-branch or all-uses criterion generally does perform
better than randomly selected test cases.

10.3.3 An Example

Let us illustrate the use of some of the control flow-based and data flow-based criteria
through the use of an example. Consider the following example of a simple program for
computing z¥ for any integer z and y [129]:

. scanf (x,

pow
. else pow
.z =1.0;

1); if (y < 0)
2
3
4
5. while (pow != 0)
6
7
8
9

0 -1y,
Yy

[]

. {z=2%*x; pow=pow - 1; }
. if (y < 0)

. z =1.0/z;

. printf(z);

The def/use graph for this program is given in the Figure 10 [129]. In the graph,
the line numbers given in the code segment are used to number the nodes (each line
contains all the statements of that block). For each node, the def set (i.e., the set of
variables defined in the block) and the c-use set (i.e., the set of variables that have a
c-use in the block) are given along with the node. For each edge, if the p-use set is not
empty, it is given in the graph. :

The various sets are easily determined from the block of code representing a node.
To determine the dcu and dpu the graph has to be traversed. The dcu for various node
and variable combination is given next:

(node, var) dcu dpu

(1, %) {6})

(17 y) {2’ 3} {(172)’ (1’3)’ (7’ 8)’ (77 9)}
(2a pOW) {6} {(5’ 6): (57 7)}

(3v pOW) {6} {(5’ 6)7 9, 7)}

(4, 2) {6,8,9} ¢

(6, 2) {6,8,9} ¢

(6, pow) {6} {(5,6), (5, 7}

(8, 2) {9} ¢

432 CHAPTER 10. TESTING

def = {x. y}
c-use =

def = {pow} def = {pow}
c-use = {y} c-use = {y}

def = {z. pow}
c-use = {x. z. pow}

def =
c-use = {z} c-use = {z}

Figure W70 detfuse araph for the example.

Now let us discuss the issue of generating test cases for this program using various
criteria. We can divide the problem of test case selection into two parts. First we
identify some paths that together satisfy the chosen criterion. Then we identify the test
cases that will execute those paths. As the first issue is more relevant when discussing
coverage criteria, frequently in testing literature only the paths that satisfy the criterion
are discussed. While selecting paths that satisfy a given coverage brings us to the
question of whether the path is feasible, that is, if it is possible to have some test data
that will execute that path. It is known that a program may contain paths that are
not feasible. A simple example is in a program with a for loop. In such a program, no
path that executes the loop fewer than the number of times specified by the for loop
is feasible. In general, the issue of feasibility of paths cannot be solved algorithmically,
as the problem is undecidable. However, the programmer can use his judgment and
knowledge about the program to decide whether or not a particular path is infeasible.
With the presence of infeasible paths, it is not possible to fully satisfy the criterion like
all-uses, and the programmer will have to use his judgment to avoid considering the
infeasible paths.

Let us first consider the all-edges criterion, which is the same as 100% branch cov-
erage. In this we want to make sure that each edge in the graph is traversed during

10.3. WHITE-BOX TESTING 433

testing. For this, if the paths executed by the test cases include the following paths, we
can see that all edges are indeed covered:

(1i20 k0000800t 30400070 Y)

Here we could have chosen a set of paths with (1; 2; 4; 5; 6; 7; 9) as one of them. But
a closer examination of the program will tell us that this path is not feasible, as going
from 1 to 2 implies that y is negative, which in turn implies that from 7 we must go
to 8 and cannot go directly to 9. As can be seen even from this simple example, it is
very easy to have paths that are infeasible. To execute the selected paths (or paths
that include these paths), the following two test cases will suffice: (z = 3,y = 1) and
(z =3,y = —1). That is, a set consisting of these two test cases will satisfy the all-edges
criterion.

Now let us consider the all-defs criterion, which requires that for all definitions of
all variables, at least one use (c-use or p-use) must be exercised during testing. First let
us observe that the set of paths given earlier for the all-edges criterion does not satisfy
the all-uses criterion. The reason is that to satisfy all-uses, we must have some path
in which the defs in node 6 (i.e., for z and pow) also get used. As the only way to get
the def of pow in node 6 to be used is to visit 6 again, these paths fail to satisfy the
criterion. The following set of paths will satisfy the all-defs criterion:

(120 5:6: 5 0: 7R (13 1 5:6:T: 91

Let’s consider the first path in this. The prefix 1; 2; 4; 5; 6; ensures that all the defs of
nodes 1, 2, and 4 have been used. Having another 5; 6 after this ensures that the defs
in node 6 are used. This is not needed by the branch coverage, but it comes because of
the def-use constraints. It can also be easily seen that the set of test cases selected for
the branch coverage will not suffice here. The following two test cases will satisfy the
criteria: (x =3,y =4) and (z =3,y = -2).

Let us finally consider the all-uses criterion, which requires that all p-uses and all
c-uses of all variable definitions be tried during testing. In other words, we have to
construct a set of paths that include a path from any node having a def to all nodes
in its dcu and its dpu. The dcu and dpu sets for all nodes were given earlier. In this
example, as it turns out, the paths given earlier for all-defs also satisfy the all-uses
criterion. Hence, the corresponding test cases will also suffice. We leave the details of
this as an exercise for the reader.

10.3.4 DMutation Testing

Mutation testing is another structural testing technique that differs fundamentally from
the approaches discussed earlier. In control flow-based and data flow-based testing, the
focus was on which paths to execute during testing. Mutation testing does not take a

434 CHAPTER 10. TESTING

path-based approach. Instead, it takes the program and creates many mutants of it by
making simple changes to the program. The goal of testing is to make sure that during
the course of testing, each mutant produces an output different from the output of the
original program. In other words, the mutation testing criterion does not say that the
set of test cases must be such that certain paths are executed; instead it requires the
set of test cases to be such that they can distinguish between the original program and
its mutants. The description of mutation testing given here is based on [50, 115].

In hardware, testing is based on some fault models that have been developed and
that model the actual faults closely. The fault models provide a set of simple faults,
combination of which can model any fault in the hardware. In software, however, no
such fault model exists. That is why most of the testing techniques try to guess where
the faults might lie and then select the test cases that will reveal those faults. In
mutation testing, faults of some pre-decided types are introduced in the program being
tested. Testing then tries to identify those faults in the mutants. The idea is that if all
these “faults” can be identified, then the original program should not have these faults;
otherwise they would have been identified in that program by the set of test cases.

Clearly this technique will be successful only if the changes introduced in the main
program capture the most likely faults in some form. This is assumed to hold due
to the competent programmer hypothesis and the coupling effect. The competent
programmer hypothesis says that programmers are generally very competent and do
not create programs at random, and for a given problem, a programmer will produce a
program that is very “close” to a correct program. In other words, a correct program can
be constructed from an incorrect program with some minor changes in the program. The
coupling effect says that the test cases that distinguish programs with minor differences
with each other are so sensitive that they will also distinguish programs with more
complex differences. In [115], some experiments are cited in which it has been shown
that the test data that can distinguish mutants created by simple changes can also
distinguish up to 99% of the mutants that have been created by applying a series of
simple changes.

Now let us discuss the mutation testing approach in a bit more detail. For a program
under test P, mutation testing prepares a set of mutants by applying mutation operators
on the text of P. The set of mutation operators depends on the language in which P is
written. In general, a mutation operator makes a small unit change in the program to
produce a mutant. Examples of mutation operators are: replace an arithmetic operator
with some other arithmetic operator, change an array reference (say, from A to B),
replace ‘a constant with another constant of the same type (e.g., change a constant to
1), change the label for a goto statement, and replace a variable by some special value
(e.g., an integer or a real variable with 0). Each application of a mutation operator
results in one mutant. As an example, consider a mutation operator that replaces an
arithmetic operator with another one from the set {+, —, *,%x,/}. If a program P

10.3. WHITE-BOX TESTING 435

contains an expression
a=0%1c -d).

then this particular mutation operator will produce a total of eight mutants (four by
replacing ‘*’ and four by replacing ‘-’). The mutation operators that make exactly one
syntactic change in the program to produce a mutant are said to be of first order. If
the coupling effect holds, then the first-order mutation operators should be sufficient,
and there is no need for higher-order mutation operators.

Mutation testing of a program P proceeds as follows. First a set of test cases T is
prepared by the tester, and P is tested by the set of test cases in T. If P fails, then
T reveals some errors, and they are corrected. If P does not fail during testing by T,
then it could mean that either the program P is correct or that P is not correct but T
is not sensitive enough to detect the faults in P. To rule out the latter possibility (and
therefore to claim that the confidence in P is high), the sensitivity of T is evaluated
through mutation testing and more test cases are added to T until the set is considered
sensitive enough for “most” faults. So, if P does not fail on T, the following steps are
performed [115]:

1. Generate mutants for Po Suppose there are N mitants.

20 By execnting cach mutant and Poon cach rest cose o T Hnd how snany imatants
can be distinenished by T Let D Do the munber of matant= that are distinenished:

sich mutants are ealled dead.

3. For each nnutant that cannot be distinguished by T (ecalled a liee mutant). iind
ont which of them are eguivalent to P That is. derermine the mutants that will
alwayvs produce the saane ontput as P Let £ be the nuiber of equuvalent marants.

4o The mwtation scoic s compured as (N - L)

7

S0 Add more test cases to T oand conthme festine until the nndation score is 1.

In this approach, for the mutants that have not been distinguished by T, their equiv-
alence with P has to be determined. As determining the equivalence of two programs
is undecidable, this cannot be done algorithmically and will have to be done manually
(tools can be used to aid the process). There are many situations where this can be
determined easily. For example, if a condition z <= 0 (in a program to compute the
absolute value, say) is changed to x < 0, we can see immediately that the mutant pro-
duced through this change will be equivalent to the original program P, as it does not
matter which path the program takes when the value of x is 0. In other situations, it
may be very hard to determine equivalence. One thing is clear: the tester will have
to compare P with all the live mutants to determine which are equivalent to P. This
analysis can then be used to add further test cases to T in an attempt to kill those live
mutants that are not equivalent.

436 CHAPTER 10. TESTING

Determining test cases to distinguish mutants from the original program is also not
easy. In an attempt to form a test case to kill a mutant, a tester will have to examine
the mutant (and the original program) and then reason which test case is likely to
distinguish the mutant. This can be a complex exercise, depending on the complexity
of the program being tested and the exact nature of the difference between the mutant
and the original program. Suppose that a statement at line [of the program P has been
mutated to produce the mutant M. The first property that a test case t needs to have
to distinguish M and P is that the test case should force the execution to reach the
statement at [. The test case t should also be such that after execution of the statement
at [, different states are reached by P and M. Before reaching [, the state while executing
the programs P and M will be the same as the programs are same until /. If the test
case is such that after executing the statement at [, the execution of the programs P and
M either takes a different path or the values in the state are different, then there is a
possibility that this difference will be manifested in output being different. If the state
after executing the statement at [continues to be the same in P and M, we will not be
able to distinguish P and M. Finally, ¢ should be such that when P and M terminate,
their states are different (assuming that P and M output their complete state at the
end only). As one can imagine, constructing a test case that will satisfy these three
properties is not going to be, in general, an easy task.

Finally, let us discuss the issue of detecting errors in the original program P, which is
one of the basic goals of testing. In mutation testing, errors in the original program are
frequently revealed when test cases are being designed to distinguish mutants from the
original program. If no errors are detected and the mutation score reaches 1, then the
testing is considered adequate by the mutation testing criterion. It should be noted that
even if no errors have been found in the program under test during mutation testing, the
confidence in the testing increases considerably if the mutation score of 1 is achieved, as
we know that the set of test case with which P has been tested has been able to kill all
(nonequivalent) mutants of P. This suggests that if P had an error, one of its mutants
would have been closer to the correct program, and then the test case that distinguished
the mutant from P would have also revealed that P is incorrect (it is assumed that the
output of all test cases are evaluated to see if P is behaving correctly).

One of the main problems of mutation testing relates to its performance. The
number of mutants that can be generated by applying first-order mutation operators
is quite large and depends on the language and the size of the mutation operator set.
For a FORTRAN program containing L lines of code to which the mutation operator
can be applied, the total number of mutants is of the order of L? [115]. These many
programs have to be compiled and executed on the selected test case set. This requires
an enormous amount of computer time. For example, for a 950-line program, it was
estimated that a total of about 900,000 mutants will be produced, the testing of which
would take more than 70,000 hours of time on a Sun SPARC station [115]. Further, the
tester might have to spend considerable time, as he will have to examine many mutants,

10.3. WHITE-BOX TESTING 437

besides the original program, to determine whether or not they are equivalent. These
performance issues make mutation testing impractical for large programs.

10.3.5 Test Case Generation and Tool Support

Once a coverage criterion is decided, two problems have to be solved to use the chosen
criterion for testing. The first is to decide if a set of test cases satisfy the criterion,
and the second is to generate a set of test cases for a given criterion. Deciding whether
a set of test cases satisfy a criterion without the aid of any tools is a cumbersome
task, though it is theoretically possible to do manually. For almost all the structural
testing techniques, tools are used to determine whether the criterion has been satisfied.
Generally, these tools will provide feedback regarding what needs to be tested to fully
satisfy the criterion.

To generate the test cases, tools are not that easily available, and due to the nature
of the problem (i.e., undecidability of “feasibility” of a path), a fully automated tool
for select'ing test cases to satisfy a criterion is generally not possible. Hence, tools can,
at best, aid the tester. One method for generating test cases is to randomly select test
data until the desired criterion is satisfied (which is determined by a tool). This can
result in a lot of redundant test cases, as many test cases will exercise the same paths.

As test case generation cannot be fully automated, frequently the test case selection
is done manually by the tester by performing structural testing in an iterative manner,
starting with an initial test case set and selecting more test cases based on the feedback
provided by the tool for test case evaluation. The test case evaluation tool can tell
which paths need to be executed or which mutants need to be killed. This information
can be used to select further test cases. _

Even with the aid of tools, selecting test cases is not a simple process. Selecting test
cases to execute some parts of as yet unexecuted code is often very difficult. Because
of this, and for other reasons, the criteria are often weakened. For example, instead of
requiring 100% coverage of statements and branches, the goal might be to achieve some
acceptably high percentage (but less than 100%).

There are many tools available for statement and branch coverage, the criteria that
are used most often. Both commercial and freeware tools are available for different
source languages. These tools often also give higher level coverage data like function
coverage, method coverage, and class coverage. To get the coverage data, the execution
of the program during testing has be closely monitored. This requires that the program
be instrumented so that required data can be collected. A common method of instru-
menting is to insert some statements called probes in the program. The sole purpose
of the probes is to generate data about program execution during testing that can be
used to compute the coverage. With this, we can identify three phases in generating
coverage data:

438 CHAPTER 10. TESTING

L. Instrument the prograrta with probes
20 Fesvente the progyaln with tost roases
S0 Nuabvze the vesules of the probwe data

Probe insertion can be done automatically by a preprocessor. The execution of the
program is done by the tester. After testing, the coverage data is displayed by the
tool—sometimes graphical representations are also shown.

Tools for data flow-based testing and mutation testing are even more complex. Some
tools have been built for aiding data flow-based testing [66, 81]. A data flow testing
tool has to keep track of definitions of variables and their uses, besides keeping track
of the control flow graph. For example, the ASSET tool for data flow testing [66] first
analyzes a Pascal program unit to determine all the definition-use associations. It then
instruments the program so that the paths executed during testing are recorded. After
the program has been executed with the test cases, the recorded paths are evaluated
for satisfaction of the chosen criterion using the definition-use associations generated
earlier. The list of definition-use associations that have not yet been executed is also
output, which can then be used by the tester to select further test cases.

It should be pointed out that when testing a complete program that consists of many
modules invoked by each other, the presence of procedures considerably complicates data
flow testing. The main reason is that the presence of global variable creates def-use pairs
in which the statements may exist in different procedures, e.g., a (global) variable may
be defined in one procedure and then used in another. To use data flow-based testing
on complete programs (rather than just modules), inter-procedural data flow analysis
will be needed. Though some methods have been developed for performing data flow-
based testing on programs with procedures [83], the presence of multiple procedures
complicates data flow-based testing. It should be noted that this problem does not
arise with statement coverage and branch coverage, where there are no special linkages
between modules. The statement or branch coverage of a program can be computed
simply from the statement or branch coverage of its modules. This is one of the reasons
for the popularity of these coverage measures and tools.

In mutation testing, the tool is generally given a program P and a set of test cases T.
The tool has to first use the mutation operations for the language in which P is written
to produce the mutants. Then P and all the mutants and P are executed with T. Based
on the output of different programs, the mutation score, and the number and identity
of dead and live mutants are determined and reported to the tester. The score tells the
tester the quality of T according to the mutation criterion, and the set of live mutants
give the feedback to the tester for selecting further test cases to increase the mutation
score. Some mutation testing tools have also been built [27, 49)].

10.4. TESTING PROCESS 439

10.4 Testing Process

The basic goal of the software development process is to produce software that has no
errors or very few errors. In an effort to detect errors soon after they are introduced,
each phase ends with a verification activity such as a review. However, most of these
verification activities in the early phases of software development are based on human
evaluation and cannot detect all the errors. This unreliability of the quality assurance
activities in the early part of the development cycle places a very high responsibility
on testing. In other words, as testing is the last activity before the final software is
delivered, it has the enormous responsibility of detecting any type of error that may be
in the software.

Furthermore, we know that software typically undergoes changes even after it has
been delivered. And to validate that a change has not affected some old functionality of
the system, regression testing is done. In regression testing, old test cases are executed
with the expectation that the same old results will be produced. Need for regression
testing places additional requirements on the testing phase; it must provide the “old”
test cases and their outputs.

In addition, as we have seen in the discussions in this chapter, testing has its own
limitations. These limitations require that additional care be taken while performing
testing. As testing is the costliest activity in software development, it is important that
it be done efficiently.

All these factors mean that testing should not be done on-the-fly, as is sometimes
done. It has to be carefully planned and the plan has to be properly executed. The
testing process focuses on how testing should proceed for a particular project. Having
discussed various methods of selecting test cases, we turn our attention to the testing
process.

10.4.1 Levels of Testing

Testing is usually relied upon to detect the faults remaining from earlier stages, in
addition to the faults introduced during coding itself. Due to this, different levels of
testing are used in the testing process; each level of testing aims to test different aspects
of the system.

The basic levels are unit testing, integration testing, and system and acceptance
testing. These different levels of testing attempt to detect different types of faults. The
relation of the faults introduced in different phases, and the different levels of testing
are shown in Figure 10.

The first level of testing is called unit testing. In this, different modules are tested
against the specifications produced during design for the modules. Unit testing is es-
sentially for verification of the code produced during the coding phase, and hence the
goal is to test the internal logic of the modules. It is typically done by the programmer

440 CHAPTER 10. TESTING

Client Acceptarice
Needs Testing
Reguirements «—— > System
Testing
Design Integration
Testing
Code Unit
Testing

Fionre 10.8: Levels of testing,

of the module. A module is considered for integration and use by others only after it
has been unit tested satisfactorily. We have discussed it in more detail the previous
chapter.

The next level of testing is often called integration testing. In this, many unit tested
modules are combined into subsystems, which are then tested. The goal here is to see
if the modules can be integrated properly. Hence, the emphasis is on testing interfaces
between modules. This testing activity can be considered testing the design.

The next levels are system testing and acceptance testing. Here the entire software
system is tested. The reference document for this process is the requirements docu-
ment, and the goal is to see if the software meets its requirements. This is essentially a
validation exercise, and in many situations it is the only validation activity. Acceptance
testing is sometimes performed with realistic data of the client to demonstrate that
the software is working satisfactorily. Testing here focuses on the external behavior of
the system; the internal logic of the program is not emphasized. Consequently, mostly
functional testing is performed at these levels.

These levels of testing are performed when a system is being built from the compo-
nents that have been coded. There is another level of testing, called regression testing,
that is performed when some changes are made to an existing system. We know that
changes are fundamental to software; any software must undergo changes. Frequently,
a change is made to “upgrade” the software by adding new features and functionality.
Clearly, the modified software needs to be tested to make sure that the new features
to be added do indeed work. However, as modifications have been made to an existing

10.4. TESTING PROCESS 441

system, testing also has to be done to make sure that the modification has not had
any undesired side effect of making some of the earlier services faulty. That is, besides
ensuring the desired behavior of the new services, testing has to ensure that the desired
behavior of the old services is maintained. This is the task of regression testing.

For regression testing, some test cases that have been executed on the old system
are maintained, along with the output produced by the old system. These test cases are
executed again on the modified system and its output compared with the earlier output
to make sure that the system is working as before on these test cases. This frequently
is a major task when modifications are to be made to existing systems.

A consequence of this is that the test cases for systems should be properly docu-
mented for future use in regression testing. In fact, for many systems that are frequently
changed, regression testing scripts are used, which automate performing regression test-
ing after some changes. A regression testing script executes a suite of test cases. For
each test case, it sets the system state for testing, executes the test case, determines
the output or some aspect of system state after executing the test case, and checks the
system state or output against expected values. These scripts are typically produced
during system testing, as regression testing is generally done only for complete systems.
When the system is modified, the scripts are executed again, giving the inputs specified
in the scripts and comparing the outputs with the outputs given in the scripts. Given
the scripts, through the use of tools, regression testing can be largely automated.

Even with testing scripts, regression testing of large systems can take a considerable
amount of time, particularly because execution and checking of all the test cases cannot
be automated. If a small change is made to the system, often executing the entire suite
of test cases is not justified, and the system is tested only with a subset of test cases.
This requires prioritization of test cases. For prioritization, generally more data about
each test case is recorded, which is then used during a regression testing to prioritize.
For example, one approach is to record the set of blocks that each test case executes.
If some part of the code has changed, then the test cases that execute the changed
portion get the highest priority for regression testing. Test case prioritization is an
active research area and many different approaches have been proposed in literature for
this. We will not discuss it any further.

10.4.2 Test Plan

In general, testing commences with a test plan and terminates with acceptance testing.
A test plan is a general document for the entire project that defines the scope, approach
to be taken, and the schedule of testing as well as identifies the test items for the entire
testing process and the personnel responsible for the different activities of testing. The
test planning can be done well before the actual testing commences and can be done in
parallel with the coding and design activities. The inputs for forming the test plan are:
(1) project plan, (2) requirements document, and (3) system design document. The
project plan is needed to make sure that the test plan is consistent with the overall

442 CHAPTER 10. TESTING

quality plan for the project and the testing schedule matches that of the project plan.
The requirements document and the design document are the basic documents used for
selecting the test units and deciding the approaches to be used during testing. A test
plan should contain the following:

e Test unit specification

e Features to be tested

Approach for testing
e Test deliverables

o Schedule and task allocation

One of the most important activities of the test plan is to identify the test units. A
test unit is a set of one or more modules, together with associated data, that are from
a single computer program and that are the object of testing. A test unit can occur at
any level and can contain from a single module to the entire system. Thus, a test unit
may be a module, a few modules, or a complete system.

As seen earlier, different levels of testing have to be used during the testing activity.
The levels are specified in the test plan by identifying the test units for the project.
Different units are usually specified for unit, integration, and system testing. The
identification of test units establishes the different levels of testing that will be performed
in the project. Generally, a number of test units are formed during the testing, starting
from the lower-level modules, which have to be unit-tested. That is, first the modules
that have to be tested individually are specified as test units. Then the higher-level units
are specified, which may be a combination of already tested units or may combine some
already tested units with some untested modules. The basic idea behind forming test
units is to make sure that testing is being performed incrementally, with each increment
including only a few aspects that need to be tested.

An important factor while forming a unit is the “testability” of a unit. A unit
should be such that it can be easily tested. In other words, it should be possible to form
meaningful test cases and execute the unit without much effort with these test cases.
For example, a module that manipulates the complex data structure formed from a
file input by an input module might not be a suitable unit from the point of view of
testability, as forming meaningful test cases for the unit will be hard, and driver routines
will have to be written to convert inputs from files or terminals that are given by the
tester into data structures suitable for the module. In this case, it might be better to
form the unit by including the input module as well. Then the file input expected by
the input module can contain the test cases.

Features to be tested include all software features and combinations of features that
should be tested. A software feature is a software characteristic specified or implied by

10.4. TESTING PROCESS 443

the requirements or design documents. These may include functionality, performance,
design constraints, and attributes.

The approach for testing specifies the overall approach to be followed in the current
project. The techniques that will be used to judge the testing effort should also be
specified. This is sometimes called the testing criterion or the criterion for evaluating
the set of test cases used in testing. In the previous sections we discussed many criteria
for evaluating and selecting test cases.

Testing deliverables should be specified in the test plan before the actual testing
begins. Deliverables could be a list of test cases that were used, detailed results of
testing including the list of defects found, test summary report, and data about the code
coverage. In general, a test case specification report, test summary report, and a list of
defects should always be specified as deliverables. Test case specification is discussed
later. The test summary report summarizes the results of the testing activities and
evaluates the results. It defines the items tested, the environment in which testing was
done, and a summary of defects found during testing.

The test plan, if it is a document separate from the project management plan,
typically also specifies the schedule and effort to be spent on different activities of test-
ing. This schedule should be consistent with the overall project schedule. For detailed
planning and execution, the different tasks in the test plan should be enumerated and
allocated to test resources who are responsible for performing them. Many large prod-
ucts have separate testing teams and therefore a separate test plan. A smaller project
may include the test plan as part of its quality plan in the project management plan.

10.4.3 Test Case Specifications

The test plan focuses on how the testing for the project will proceed, which units will
be tested, and what approaches (and tools) are to be used during the various stages of
testing. However, it does not deal with the details of testing a unit, nor does it specify
which test cases are to be used.

Test case specification has to be done separately for each unit. Based on the approach
specified in the test plan, first the features to be tested for this unit must be determined.
The overall approach stated in the plan is refined into specific test techniques that should
be followed and into the criteria to be used for evaluation. Based on these, the test cases
are specified for testing the unit. Test case specification gives, for each unit to be tested,
all test cases, inputs to be used in the test cases, conditions being tested by the test
case, and outputs expected for those test cases. Test case specifications look like a table
of the form shown in Figure 10.

Sometimes, a few columns are also provided for recording the outcome of different
rounds of testing. That is, sometimes test case specifications document is also used to
record the result of testing. In a round of testing, the outcome of all the test cases is
recorded (i.e., pass or fail). Hopefully, in a few rounds all the entries will pass.

444 CHAPTER 10. TESTING

Requirement | Condition to be | Test data and | Expected
Number tested settings output

Figure 10.9: Test case specifications.

Test case specification is a major activity in the testing process. Careful selection
of test cases that satisfy the criterion and approach specified is essential for proper
testing. We have considered many methods of generating test cases and criteria for
evaluating test cases. A combination of these can be used to select the test cases. It
should be pointed out that test case specifications contain not only the test cases, but
also the rationale of selecting each test case (such as what condition it is testing) and
the expected output for the test case.

There are two basic reasons test cases are specified before they are used for testing.
It is known that testing has severe limitations and the effectiveness of testing depends
very heavily on the exact nature of the test cases. Even for a given criterion, the exact
nature of the test cases affects the effectiveness of testing. Constructing “good” test
cases that will reveal errors in programs is still a very creative activity that depends a
great deal on the ingenuity of the tester. Clearly, it is important to ensure that the set
of test cases used is of “high quality.”

As with many other verification methods, evaluation of quality of test cases is done
through “test case review.” For any review, a formal document or work product is
needed. This is the primary reason for having the test case specification in the form of
a document. The test case specification document is reviewed, using a formal review
process, to make sure that the test cases are consistent with the policy specified in the
plan, satisfy the chosen criterion, and in general cover the various aspects of the unit to
be tested. For this purpose, the reason for selecting the test case and the expected output
are also given in the test case specification document. By looking at the conditions
being tested by the test cases, the reviewers can check if all the important conditions
are being tested. As conditions can also be based on the output, by considering the
expected outputs of the test cases, it can also be determined if the production of all the
different types of outputs the unit is supposed to produce are being tested. Another
reason for specifying the expected outputs is to use it as the “oracle” when the test case
is executed.

Besides reviewing, another reason for specifying the test cases in a document is that
the process of sitting down and specifying all the test cases that will be used for testing

10.4. TESTING PROCESS 445

helps the tester in selecting a good set of test cases. By doing this, the tester can see the
testing of the unit in totality and the effect of the total set of test cases. This type of
evaluation is hard to do in on-the-fly testing where test cases are determined as testing
proceeds.

Another reason for formal test case specifications is that the specifications can be
used as “scripts” during regression testing, particularly if regression testing is to be
performed manually. Generally, the test case specification document itself is used to
record the results of testing. That is, a column is created when test cases are specified
that is left blank. When the test cases are executed, the results of the test cases are
recorded in this column. Hence, the specification document eventually also becomes a
record of the testing results.

10.4.4 Test Case Execution and Analysis

With the specification of test cases, the next step in the testing process is to execute
them. This step is also not straightforward. The test case specifications only specify
the set of test cases for the unit to be tested. However, executing the test cases may
require construction of driver modules or stubs. It may also require modules to set up
the environment as stated in the test plan and test case specifications. Only after all
these are ready can the test cases be executed. Sometimes, the steps to be performed
to execute the test cases are specified in a separate document called the fest procedure
specification. This document specifies any special requirements that exist for setting
the test environment and describes the methods and formats for reporting the results
of testing. Measurements, if needed, are also specified, along with methods to obtain
them.

Various outputs are produced as a result of test case execution for the unit under
test. These outputs are needed to evaluate if the testing has been satisfactory.
The most common outputs are the test summary report, and the error report. The test
summary report is meant for project management, where the summary of the entire test
case execution is provided. The summary gives the total number of test cases executed,
the number and nature of errors found, and a summary of the metrics data collected.
The error report is the details of the errors found during testing.

Testing requires careful monitoring, as it consumes the maximum effort, and has
a great impact on final quality. A few metrics are very useful for monitoring testing.
Testing effort is the total effort actually spent by the team in testing activities, and is an
indicator of whether or not sufficient testing is being performed. If inadequate testing
is done, it will be reflected in a reduced testing effort or reduced testing schedule. From
the plan and past experience we should know the expected effort and duration of testing.
The estimated effort is used for monitoring. Such monitoring can catch the “miracle
finish” cases, where the project “finishes” suddenly, soon after the coding is done. Such
“finishes” occur for reasons such as unreasonable schedules, personnel shortages, and
slippage of schedule. Such a finish usually implies that to finish the project the testing

446 CHAPTER 10. TESTING

phase has been compressed too much, which is likely to mean that the software has not
been evaluated properly.

Computer time consumed during testing is another measure that can give valuable
information to project management. In general, in a software development project,
the computer time consumption is low at the start, increases as time progresses, and
reaches a peak. Thereafter it is reduced as the project reaches its completion. Maximum
computer time is consumed during the latter part of coding and testing. By monitoring
the computer time consumed, one can get an idea about how thorough the testing
has been. Again, by comparing the previous buildups in computer time consumption,
computer time consumption of the current project can provide valuable information
about whether or not the testing is adequate.

The error report gives the list of all the defects found. The defects are generally also
categorized into different categories. To facilitate reporting and tracking of defects found
during testing (and other quality control activities), defects found must be properly
recorded. This recording is generally done using tools. Let us now look at the defect
logging and tracking activity, and how some simple analysis can be done on the defect
data to aid project monitoring. With defect logging using tools, the error report is
really a view of the logged defect data.

10.4.5 Defect Logging and Tracking

A large software project may include thousands of defects that are found by different
people at different stages of the project. Often the person who fixes a defect is different
than the person who finds or reports the defect. In such a scenario, defect reporting
and closing cannot be done informally. The use of informal mechanisms may lead to
defects being found but later forgotten, resulting in defects not getting removed or in
extra effort in finding the defect again. Hence, defects found must be properly logged
in a system and their closure tracked. Defect logging and tracking is considered one
of the best practices for managing a project [26], and is followed by most software
organizations.

Let us understand the life cycle of a defect. A defect can be found by anyone at
anytime. When a defect is found, it is logged in a defect control system, along with
sufficient information about the defect. The defect is then in the state “submitted,”
essentially implying that it has been logged along with information about it. The job
of fixing the defect is then assigned to some person, who is generally the author of the
document or code in which the defect is found. The assigned person does the debugging
and fixes the reported defect, and the defect then enters the “fixed” state. However,
a defect that is fixed is still not considered as fully done. The successful fixing of the
defect is verified. This verification may be done by another person (often the submitter),
or by a test team, and typically involves running some tests. Once the defect fixing is
verified, then the defect can be marked as “closed.” In other words, the general life

10.4. TESTING PROCESS 447

cycle of a defect has three states—submitted, fixed, and closed, as shown in Figure 10.
A defect that is not closed is also called open.

+ entered

by the
submitter

checked
by
submitter

owner

Fignre 10.10: Life cvele of a defeet.

This is a typical life cycle of a defect which is used in many organizations (e.g. [97]).
However, the life cycle can be expanded or contracted to suit the purposes of the project
or the organization. For example, some organizations developing critical systems may
have more stages in the life cycle to track the defect more closely. Similarly, in a small
non-critical project, the life cycle may have only two states—open and closed.

When logging a defect, sufficient information has to be recorded so that the effects
can be recreated and debugging and fixing can be done. However, just tracking each
defect is not sufficient for most projects, as analysis of defect data can also be very
useful for improving the quality. To permit such analysis, suitable information has to
be recorded. What data is recorded depends on the organization, and an example from
an organization can be found in [97].

'To understand the nature of defects being found, frequently defects are categorized
into a few types, and the type of each defect is recorded. Such a classification is essential
if causes of defects are to be identified later and then removed in an attempt to prevent
defects from occurring. The defects can be classified in many different ways, and many
schemes have been proposed. The orthogonal defect classification scheme [33], for
example, classifies defects in categories that include functional, interface, assignment,
timing, documentation, and algorithm. Some of the defect types used in a commercial
organization are: Logic, Standards, User Interface, Component Interface, Performance,
and Documentation [97].

The severity of the defect with respect to its impact on the working of the system
is also often divided into few categories. This information is important for project
management. For example, if a defect impacts a lot of users or has a catastrophic
effect, then a project leader will want to fix it urgently. Similarly, if a defect is of a
minor nature, it may be scheduled at ease. Hence classification of defects with respect
to severity is very important for managing a project. Recording severity of defects
found is also a standard practice in most software organizations. Most often a four-level
classification is used. One such classification is:

o (‘rifical. Show stopper: affects a Jot of users: can delav project.

448 CHAPTER 10. TESTING

o Major. Has a large impact but workaround exists: considerable amount of work
needed to fix it. though schedule impact s less,

o Amor. An isolated defeet that minnifosts rarely and with fittle impact.,
e C'osmictic. Small mistakes that don’t impact the correct working,

At the end of the project, ideally no open defects should remain. However, this ideal
situation is often not practical for most large systems. Using severity classification, a
project may have release criteria like “software can be released only if there are no
critical and major bugs, and minor bugs are less than x per feature.”

The defect data can be analyzed in other ways to improve project monitoring and
control. A standard analysis done on almost all long lasting projects is to plot and
observe the defect arrival and closure trend. Plotting both the arrival and removal can
at a glance provide a view of the state of the quality control tasks in the project. An
example of such a curve is shown in Figure 10 [97]. According to this curve, the gap
between the total defects and the total closed defects is gradually increasing, although
the increase is not too alarming. (In the project, this visibility prompted a change in
the project schedule—development activity was slowed and resources were assigned to
defect fixing such that the number of open defects was brought down.)

Cumulative Defect Trends

70

e #

5O f e ——4

40+ ———m e ——— ~L AL ® Cumulative Closed

e —— Cumulative Grand Total
t+—————- g — = — e — — -

20 4-—-= el]

10 T- e = — — 4

0 t t t + +
12/19/96 - 1/2/97 - 1/16/97 - 2/6/97 -
12/26/96 119197 1123197 2/12/97

Figure 10.11: Defect arrival and closure trend.

In addition to plotting the arrival and fixing, the volume of open defects can also
be plotted. This gives a direct plot of how many defects are still not closed. This
plot, generally increases with time first, and then starts decreasing. Towards project
completion this plot should reach towards zero. For some intervals, the number of open

10.5. DEFECT ANALYSIS AND PREVENTION 449

defects might touch zero. That is, at some point during the project, all defects have been
closed. Of course, this does not mean that there are no defects in the software—after
reaching the zero open defect, further testing (and adding of code) may reveal defects.
In other words, this plot is not monotonically decreasing, though it is expected that for
most controlled projects its general trend will be downwards.

The defect data can also be analyzed for improving the process. One specific tech-
nique for doing this is defect prevention. We will discuss this further in the following
section.

10.5 Defect Analysis and Prevention

We have seen that defects are introduced during development and are removed by the
various quality control tasks in the process. Whereas the focus of the quality control
tasks it to identify and remove the defects, the aim of defect prevention is to learn
from defects found so far on the project and prevent defects from getting injected in
the rest of the project. Some forms of defect prevention are naturally practiced and
in a sense the goal of all standards, methodologies, and rules. is basically to prevent
defects. However, when actual defect data is available, more effective defect prevention
is possible through defect data analysis [76, 75]. Here we discuss an approach for doing
focused defect prevention, based on practices of a commercial organization [97].

Defects analysis and prevention can be done at the organization level as well as at
the project level. At the organization level, analysis of defects can lead to enhancements
of organization-wide checklists, processes, or training. Defects analysis at the project
level, aims to learn from defects found so far on the project and prevent defects in the
rest of the project. Here we discuss only project-level analysis.

The main reason behind any defect prevention activity is to improve quality and
improve productivity. Quality improves as with fewer defects injected, with the same
effectiveness of quality control processes, the final system will have fewer defects. Pro-
ductivity improves as lesser effort is spent on removing defects.

For a project, defect analysis for prevention can be done after some amount of coding
has been done and a representative set of defects is known. If an iterative process is
used, then the natural place for doing defect analysis will be after an iteration. The
main tasks to be performed for doing defect prevention are: Do Pareto analysis to
identify the main defect types, perform causal analysis to identify the causes of defects,
and identify solutions to attack the causes.

10.5.1 Pareto Analysis

Pareto analysis is a common statistical technique used for analyzing causes, and is one
of the primary tools for quality management [119, 139]. It is also sometimes called the

450 CHAPTER 10. TESTING

80-20 rule: 80% of the problems come from 20% of the possible sources. In software it
can mean that 80% of the defects are caused by 20% of the root causes or that 80% of
the defects are found in 20% of the code.

The first step for defect prevention is to draw a Pareto chart from the defect data.
The number of defects found of different types is determined from the defect data and is
plotted as a bar chart in the decreasing order. Along with the bar chart, a chart is also
plotted on the same graph showing the cumulative number of defects as we move from
types of defects given on the left of the x-axis to the right of the x-axis. The Pareto
chart makes it immediately clear in visual as well as quantitative terms which are the
main types of defects, and also which types of defects together form 80-85% of the total
defects. If defects are being logged with information about their type, it is relatively
easy to draw the Pareto chart.

As an example, consider the Pareto chart of the defect data for a project shown in
Figure 10 [97]. This is a project in which features are being added to an existing system.
The defects data for all enhancements done so far was used for this analysis. As can
be seen, the logic defects are the most, followed by user interface defects, followed by
standards defects. Defects in these three categories together account for more than 88%
of the total defects, while the defects in the top two categories account for over 75% of
the defects. Clearly, the target for defect prevention should be the top two or the top
three categories such that defects in these categories can be reduced.

Pareto Chart

Ficure 10.12: Pareto chart tor deteers found in ACE project.

